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1.    Introduction 

 

An artificial neural network is a mathematical model based on the nervous 

system of living beings. An important property of these models is the ability to 

acquire and store information. At present there are a variety of continuous and 

discrete neural network models. 

In 1982 Jhon Hopfield [2] presented a new model of a recurrent discrete 

neural network, which constitutes an associative memory with many applications 

such as recognition of patterns, images, signals, etc. 

In this paper we construct a new recurrent polynomial discrete neural network, in 

the sense that we use fixed points of quadratic and cubic polynomial functions, 

constructed by Rubio and Hernández (2015). This new neural network generalizes 

the recurrent quadratic neural network [8], which contained a single previously 

fixed point attractor. 

Our goal is to establish a method to construct the matrix of synaptic 

weights, which will guarantee the stability of several fixed points attractors given 

previously. In addition, we give an application of our network in the area of 

pattern recognition. 

 

2.    Quadratic and cubic functions 

 

In this section, we present some results obtained by Rubio and Hernandez 

[6]. In the quadratic case, two points are given as a priori fixed points  

 

mailto:frubio@unitru.edu.pe


ADVANCED MATH. MODELS & APPLICATIONS, V.2, N.3, 2017 

 
230 

 

𝑥0 , 𝑥1 ∈ ℝ, 𝑥0 < 𝑥1, and we determine the quadratic function: 

𝑓 𝑥 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶,                                                   (1) 

where: 

 
 
 

 
 

𝐴 =
𝑦𝑚 −𝑥𝑚

(𝑥𝑚 −𝑥1)(𝑥𝑚 −𝑥0)
    

𝐵 =
𝑦𝑚  𝑥0+𝑥1 −𝑥0𝑥1−𝑥𝑚

2

(𝑥1−𝑥𝑚 )(𝑥𝑚 −𝑥0)

𝐶 =
𝑥0𝑥1(𝑦𝑚 −𝑥𝑚 )

(𝑥𝑚 −𝑥1)(𝑥𝑚 −𝑥0)
.     

                                               (2)         

The point (𝑥𝑚  , 𝑦𝑚 ) is given, such that  𝑥0 , 𝑥0 ,  𝑥1 , 𝑥1  and (𝑥𝑚  , 𝑥𝑚 )  are not 

collinear.   

By using theorem (5.1) of [6], with  𝑥𝑚 = 𝑥0 − 𝜀 ,   𝑦𝑚 = 𝑥0 , 𝜀 = 0.1 , we 

obtain: 

a) 𝑥0 is an attractor fixed point,                                                                     (3) 

b) 𝑥1 is a repellent fixed point. 

 

 
Fig.1. 𝑥0 is an attractor fixed point. 

 

By using theorem (5.4) of [6], with  𝑥𝑚 = 𝑥1 + 𝜀 ,   𝑦𝑚 = 𝑥1  , 𝜀 = 0.1 , we 

obtain: 

a) 𝑥0 is a repellent fixed point.                                                                      (4) 

b) 𝑥1 is an attractor fixed point. 

c) In the cubic case, the points𝑥0, 𝑥1, 𝑥2 ∈ ℝ, 𝑥0 < 𝑥1 < 𝑥2, are given as 

fixed points given previously, and we determine the cubic function: 

d) 𝑓 𝑥 = 𝐴𝑥3 + 𝐵𝑥2 + 𝐶𝑥 + 𝐷                                                                   (5) 

e) where, by theorem (3.1) of [6], we obtain: 

 
  
 

  
 𝐴 =

−(𝑦𝑚 −𝑥𝑚 )

 𝑥0−𝑥𝑚   𝑥1−𝑥𝑚   𝑥2−𝑥𝑚  

𝐵 =
−(𝑥𝑚 −𝑦𝑚 ) 𝑥0+𝑥1+𝑥2 

 𝑥0−𝑥𝑚   𝑥𝑚 −𝑥1  𝑥𝑚 −𝑥2 

𝐶 =
−𝑥0𝑥1𝑥2+𝑥0𝑥1𝑦𝑚 +𝑥0𝑥2𝑦𝑚 −𝑥0𝑥𝑚

2 +𝑥1𝑥2𝑦𝑚 −𝑥1𝑥𝑚
2 −𝑥2𝑥𝑚

2 +𝑥𝑚
3

 𝑥0−𝑥𝑚   𝑥𝑚 −𝑥1  𝑥𝑚 −𝑥2 

𝐷 =
−𝑥0𝑥1𝑥2 𝑥𝑚 −𝑦𝑚  

 𝑥0−𝑥𝑚   𝑥𝑚 −𝑥1  𝑥𝑚 −𝑥2 

                         (6) 
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Fig.2. 𝑥1 is an attractor fixed point 

 

The point  (𝑥𝑚  , 𝑦𝑚 )  is given, such that 
 𝑥0 , 𝑥0  ,  𝑥1 , 𝑥1  ,  𝑥2 , 𝑥2  and (𝑥𝑚  , 𝑥𝑚 )  are no collinear. 

If  𝑥𝑚 = 𝑥2 + 𝜀 ,   𝑦𝑚 = 𝑥2  , 𝜀 = 0.1 , we obtain: 

a) 𝑥0  and  𝑥2  are attractor fixed points,                                                       (7) 

b) 𝑥1 is a repellent fixed point. 

 
Fig.3. 𝑥0  and  𝑥2  are attractor fixed points 

 

3.      Generalization  

 

In this section, we extend the theory about recurrent quadratic neural 

network [8], in the case of several attractor fixed points. 

We consider ℤ𝑛 , where ℤ is the set of integer numbers, and let 𝑧0 ∈ ℤ𝑛  be, 

𝑧0 = (𝑧0
1, … , 𝑧0

𝑛 ) such that: 

𝑧0 = (0, … ,0   
𝑁0

, 𝑧0
𝑁0+1

, … , 𝑧0
𝑛 ),                                 (8) 

where  1 ≤ 𝑁0 ≤ 𝑛 − 2. 

Following to Rubio and Hernández [7], by using  𝑧0, we obtain the matrix 

𝑊0, making: 

1°.    𝑤𝑖 ,𝑁0+1𝑧0
𝑁0+1

+ ⋯ + 𝑤𝑖 ,𝑛𝑧0
𝑛 = 0,      ∀𝑖 = 1, … , 𝑁0.                                     (9) 

         Without loss of generality, we solve for the last term: 

 𝑤𝑖,𝑗 𝑧0
𝑗𝑛−1

𝑗 =𝑁0+1 +  𝑤𝑖 ,𝑛𝑧0
𝑛 = 0, 
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𝑤𝑖 .𝑛 = −  𝑤𝑖 .𝑗
𝑧0

𝑗

𝑧0
𝑛

𝑛−1
𝑗 =𝑁0+1 .                                           (10) 

2° . 𝑤𝑖,𝑗 𝑧0
𝑗𝑛

𝑗=𝑁0+1
𝑗≠𝑖

+  𝑤𝑖 ,𝑖𝑧0
𝑖 =  𝑧0

𝑖  , ∀ 𝑖 = 𝑁0 + 1, … , 𝑛.                                    (11) 

         Then:          

𝑤𝑖 .𝑖 = 1 −  𝑤𝑖 ,𝑗
𝑛
𝑗 =𝑁0+1

𝑗≠𝑖

𝑧0
𝑗

𝑧0
𝑖 .                                        (12) 

Therefore, the matrix  𝑊0 have the form: 

𝑊0 =  𝑊1 𝑊2

𝑊3 𝑊4 ,                                                (13) 

where: 

𝑊1 =  

𝑤1,1 ⋯ 𝑤1,𝑁0

⋮ ⋱ ⋮
𝑤𝑁0 ,1 ⋯ 𝑤𝑁0 ,𝑁0

     ,      𝑊2 =  

𝑤1,𝑁0+1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑁0 ,𝑁0+1 ⋯ 𝑤𝑁0 ,𝑛

  

 

𝑊3 =  

𝑤𝑁0+1,1 ⋯ 𝑤𝑁0+1,𝑁0

⋮ ⋱ ⋮
𝑤𝑛 ,1 ⋯ 𝑤𝑛 ,𝑁0

  ,    𝑊4 =  

𝑤𝑁0+1,𝑁0+1 ⋯ 𝑤𝑁0+1,𝑛

⋮ ⋱ ⋮
𝑤𝑛 ,𝑁0+1 ⋯ 𝑤𝑛 ,𝑛

 . 

 

We note that  𝑤𝑖 ,𝑛  , ∀ 𝑖 = 1, … , 𝑁0 , are obtained by using (10), and 𝑤𝑖 ,𝑖  , ∀ 𝑖 =
𝑁0 + 1, … , 𝑛 , are obtained by using (12). 

Now, we state and show some results, for that 𝑧0 will denote both the vector 

in ℤ𝑛  and the matrix of order 𝑛 × 1, whose elements are the same of 𝑧0. 

Theorem 1.  Let 𝑊0 be the matrix (13). Then: 

𝑊0. 𝑧0 =  𝑧0.                                             (14) 

Proof. By (8): 

𝑧0 =  0, … ,0   
𝑁0

, 𝑧0
𝑁0+1

, … , 𝑧0
𝑛 . 

We obtain: 

a)  𝑤𝑖,𝑗
𝑛
𝑗 =1 𝑧0

𝑗
=  𝑤𝑖 ,𝑗

𝑛
𝑗 =𝑁0+1 𝑧0

𝑗
=   𝑤𝑖,𝑗

𝑛−1
𝑗=𝑁0+1 𝑧0

𝑗
+  𝑤𝑖 ,𝑛𝑧0

𝑛 = 

=  𝑤𝑖,𝑗
𝑛−1
𝑗=𝑁0+1 𝑧0

𝑗
+ 𝑧0

𝑛  −  𝑤𝑖.𝑗
𝑧0

𝑗

𝑧0
𝑛

𝑛−1
𝑗=𝑁0+1  = 0, ∀𝑖 = 1, … , 𝑁0,  by (10). 

b)  𝑤𝑖,𝑗
𝑛
𝑗 =1 𝑧0

𝑗
=  𝑤𝑖 ,𝑗

𝑛
𝑗 =𝑁0+1 𝑧0

𝑗
 , ∀𝑖 = 𝑁0 + 1, … , 𝑛  

=  𝑧0
𝑖 𝑤𝑖 ,𝑖 +   𝑤𝑖,𝑗

𝑛

𝑗 =𝑁0+1
𝑗≠𝑖

𝑧0
𝑗
 

=  𝑧0
𝑖 (1 −  𝑤𝑖 .𝑗

𝑛
𝑗 =𝑁0+1

𝑗≠𝑖

𝑧0
𝑗

𝑧0
𝑖 ) +   𝑤𝑖,𝑗

𝑛
𝑗 =𝑁0+1

𝑗≠𝑖

𝑧0
𝑗
,   

=  𝑧0
𝑖  . 

by (12). 

Since (a) and (b), we obtain that  𝑊0. 𝑧0 =  𝑧0. 
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The next, we propose a methodology to achieve our goal. 

So, we consider the Hamming space 𝐻𝑛 = {−1, 1}𝑛 , and let: 

𝑥𝑝1
, 𝑥𝑝2

, … , 𝑥𝑝𝑟
 ∈  𝐻𝑛 =  −1, 1 𝑛  , 𝑥𝑝𝑖

≠ 𝑥𝑝𝑗
,   𝑖 ≠ 𝑗             (15) 

Our method consist of the following steps: 

1. Let 𝑧𝑟 =  𝑥𝑝𝑗

𝑟
𝑗 =1  be. Then:  𝑧𝑟

𝑖 =  𝑥𝑝𝑗

𝑖𝑟
𝑗 =1  , ∀𝑖 = 1, … , 𝑛. 

2. Now, we construct the vector  𝑧0 ∈ ℤ𝑛 , taking into account that: 

a) If  𝑧𝑟
𝑖  ≠ ± 𝑟, then  𝑧0

𝑖 = 0.                                                                (16) 

b) If  𝑧𝑟
𝑖 = ± 𝑟, then  𝑧0

𝑖 = 𝑧𝑟
𝑖 . 

3. Let 𝑁0 be the number of zeros of  𝑧0. It must be fulfilled that: 

1 ≤ 𝑁0 ≤ 𝑛 − 2.                                       (17) 

4. Without loss of generality, we suppose that: 

𝑧0 =  0, … ,0   
𝑁0

, 𝑧0
𝑁0+1

, … , 𝑧0
𝑛 .                                   (18) 

5. By using the vector  𝑧0 given by (8), we obtain the matrix 𝑊0 given by 

(13). Moreover, by theorem 1, we obtain that 𝑊0. 𝑧0 =  𝑧0. 

6. Since the matrix 𝑊0 have  𝑁0 free columns, we will assign values to its 

components, such a way we can obtain the matrix 𝑊, according to the 

following rule: 

a) 𝑤𝑖 ,𝑖 = 1,   ∀ 𝑖 = 1, … , 𝑁0.                                                                  (19) 

b) 𝑤𝑖 ,𝑖 = 0,   ∀ 𝑖 = 1, … , 𝑛  ,   ∀ 𝑗 = 1, … , 𝑁0  ,   𝑖 ≠ 𝑗.                          (20) 

Therefore, the matrix 𝑊 is: 

𝑊 =  𝑊1 𝑊2

𝑊3 𝑊4 ,                                           (21) 

where: 

𝑊1 =  
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

       ,     𝑊2 =  

𝑤1,𝑁0+1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑁0 ,𝑁0+1 ⋯ 𝑤𝑁0 ,𝑛

 , 

𝑊3 =  
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

       ,     𝑊4 =  

𝑤𝑁0+1,𝑁0+1 ⋯ 𝑤𝑁0+1,𝑛

⋮ ⋱ ⋮
𝑤𝑛 ,𝑁0+1 ⋯ 𝑤𝑛 ,𝑛

 . 

 

Theorem 2. Let  𝑊 be the matrix given by (21), and 𝑥𝑝𝑗
 , ∀ 𝑗 = 1, … , 𝑟  the 

vectors given by (15). Then:                                                                     

𝑊𝑥𝑝𝑗
=  𝑥𝑝𝑗

   ,   ∀ 𝑗 = 1, … , 𝑟.                                (22)   

Proof. Let  𝑥𝑝𝑗
=  𝑥𝑝𝑗

1 , 𝑥𝑝𝑗

2 , … , 𝑥𝑝𝑗

𝑛  ,   ∀ 𝑗 = 1, … , 𝑟. We obtain: 

a)  𝑤𝑖,𝑘
𝑛
𝑘=1 𝑥𝑝𝑗

𝑘 =  𝑤𝑖,𝑘
𝑁0
𝑘=1 𝑥𝑝𝑗

𝑘 +  𝑤𝑖 ,𝑘
𝑛
𝑘=𝑁0+1 𝑥𝑝𝑗

𝑘  

= 𝑥𝑝𝑗
𝑖 +  𝑤𝑖,𝑘

𝑛−1

𝑘=𝑁0+1

𝑥𝑝𝑗
𝑘 +  𝑥𝑝𝑗

𝑛 𝑤𝑖 ,𝑛  
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= 𝑥𝑝𝑗
𝑖 +  𝑤𝑖,𝑘

𝑛−1
𝑘=𝑁0+1 𝑥𝑝𝑗

𝑘 + 𝑥𝑝𝑗
𝑛 (− 𝑤𝑖 .𝑗

𝑥𝑝𝑗
𝑘

𝑥𝑝𝑗
𝑛

𝑛−1
𝑘=𝑁0+1 ), by (10). 

= 𝑥𝑝𝑗
𝑖   ,   ∀ 𝑖 = 1, … , 𝑁0. 

b)  𝑤𝑖,𝑘
𝑛
𝑘=1 𝑥𝑝𝑗

𝑘 =  𝑤𝑖,𝑘
𝑁0
𝑘=1 𝑥𝑝𝑗

𝑘 +  𝑤𝑖 ,𝑘
𝑛
𝑘=𝑁0+1 𝑥𝑝𝑗

𝑘  

= 𝑥𝑝𝑗
𝑖 𝑤𝑖 ,,𝑖 +  𝑤𝑖 ,𝑘

𝑛

𝑘=𝑁0+1
𝑘≠𝑖

𝑥𝑝𝑗
𝑘  

= 𝑥𝑝𝑗
𝑖 (1 −  𝑤𝑖.𝑘

𝑛

𝑘=𝑁0+1
𝑘≠𝑖

𝑥𝑝𝑗
𝑘

𝑥𝑝𝑗

𝑖
) +  𝑤𝑖,𝑘

𝑛

𝑘=𝑁0+1
𝑘≠𝑖

𝑥𝑝𝑗
𝑘  

= 𝑥𝑝𝑗
𝑖   ,   ∀ 𝑖 = 𝑁0 + 1, … , 𝑛 . 

Theorem 3. Let 𝑊 be the matrix given by (21), and   𝑥𝑎𝑗
= − 𝑥𝑝𝑗

 , ∀ 𝑗 = 1, … , 𝑟. 

Then: 

𝑊𝑥𝑎𝑗
=  𝑥𝑎𝑗

,   ∀ 𝑗 = 1, … , 𝑟.                              (23) 

Proof. Since (22):            𝑊𝑥𝑝𝑗
=  𝑥𝑝𝑗

,   ∀ 𝑗 = 1, … , 𝑟 . 

−𝑊𝑥𝑝𝑗
= −𝑥𝑝𝑗

 

𝑊(−𝑥𝑝𝑗
) = −𝑥𝑝𝑗

 

Therefore:  𝑊𝑥𝑎𝑗
=  𝑥𝑎𝑗

 , ∀ 𝑗 = 1, … , 𝑟. 

 

4. Construction of Discrete Neural Network 

 

  Now, we construct the new polynomial discrete recurrent neural network 

with more than one attractor fixed point given previously. 

Let  𝑥0 = −1, 𝑥1 = 1 be, and we denote by: 

a) 𝑓− 𝑥 = 𝐴−𝑥2 + 𝐵−𝑥 + 𝐶−, the function given by (3). 

b) 𝑓+ 𝑥 = 𝐴+𝑥2 + 𝐵+𝑥 + 𝐶+, the function given by (4). 

Let 𝑥0 = −1 , 𝑥1 = 0 ,   𝑥2 = 1 be, and we denote by: 

𝑓± 𝑥 = 𝐴±𝑥3 + 𝐵±𝑥2 + 𝐶±𝑥 + 𝐷±, the function given by (7). 

The new polynomial discrete recurrent neural network is given by the application: 

𝐹: ℝ𝑛 → ℝ𝑛defined by 𝐹 𝑥 = (𝐹1(𝑥), … , 𝐹𝑛 (𝑥)), where: 

𝐹𝑖 𝑥 =  

𝑓−  𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑗  ,   if  𝑧0

𝑖 =  −𝑟                          

𝑓+  𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑗   ,   if  𝑧0

𝑖 =  𝑟 ,    ∀𝑖 = 1, … , 𝑛

𝑓±  𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑗   ,    if  𝑧0

𝑖 =  0.                          

                 (24) 

Theorem 4. Let 𝑥𝑝1
, 𝑥𝑝2

, … , 𝑥𝑝𝑟
∈ 𝐻𝑛  be given by (15), and  𝐹: 𝑅𝑛 → 𝑅𝑛  given 

by (24). 

Then: 

a) 𝐹 𝑥𝑝𝑘
 =  𝑥𝑝𝑘

 ,   ∀ 𝑘 = 1, … , 𝑟.                                                              (25) 

b) 𝐹(𝑥𝑎𝑘
) =  𝑥𝑎𝑘

 ,   ∀ 𝑘 = 1, … , 𝑟.                                                               (26) 
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Proof. Since (22):   𝑊𝑥𝑝𝑘
=  𝑥𝑝𝑘

 ,   ∀ 𝑘 = 1, … , 𝑟 

a) Let 𝑊𝑖  be the i-th row of W matrix, then by (22) we obtain: 

𝑊𝑖𝑥𝑝𝑘
= 𝑥𝑝𝑘

𝑖   ,   ∀ 𝑖 = 1, … , 𝑛 

With which: 

𝐹𝑖 𝑥𝑝𝑘
 =

 
 
 
 
 

 
 
 
 𝑓−( 𝑤𝑖,𝑗

𝑛

𝑗=1

𝑥𝑗 ), if  𝑧0
𝑖 =  −𝑟                           

𝑓+( 𝑤𝑖,𝑗

𝑛

𝑗=1

𝑥𝑗 ) , if  𝑧0
𝑖 =  𝑟 ,    ∀𝑖 = 1, … , 𝑛

𝑓±   𝑤𝑖,𝑗

𝑛

𝑗 =1

𝑥𝑗  , if  𝑧0
𝑖 =  0.                      

  

𝐹𝑖 𝑥𝑝𝑘
 =  

𝑓− 𝑥𝑝𝑘
𝑖  = 𝑥𝑝𝑘

𝑖    ,   if  𝑧0
𝑖 =  −𝑟                          

𝑓+ 𝑥𝑝𝑘
𝑖  = 𝑥𝑝𝑘

𝑖  ,      if  𝑧0
𝑖 =  𝑟 ,    ∀𝑖 = 1, … , 𝑛

𝑓± 𝑥𝑝𝑘
𝑖  = 𝑥𝑝𝑘

𝑖   ,      if  𝑧0
𝑖 =  0.                           

  

𝐹𝑖 𝑥𝑝𝑘
 = 𝑥𝑝𝑘

𝑖     ,    ∀ 𝑘 = 1, … , 𝑛. 

Therefore:   𝐹 𝑥𝑝𝑘
 =  𝑥𝑝𝑘

 ,   ∀ 𝑘 = 1, … , 𝑟 

b) This proof is analogous to the case (a). 

 

5.       Stability 

In this section, we study the stability of the fixed points given a priori, 

guaranteeing that they will be attractive fixed points. 

Let  𝐹: 𝑅𝑛 → 𝑅𝑛  be given by (24), where: 

𝐹𝑖 𝑥 =

=

 
 
 
 
 
 

 
 
 
 
 

𝐴𝑖
−( 𝑤𝑖 ,𝑗

𝑛

𝑗=1

𝑥𝑗 )2 + 𝐵𝑖
−   𝑤𝑖 ,𝑗

𝑛

𝑗 =1

𝑥𝑗  + 𝐶𝑖
−, if  𝑧0

𝑖 =  −𝑟                           

𝐴𝑖
+( 𝑤𝑖 ,𝑗

𝑛

𝑗=1

𝑥𝑗 )2 + 𝐵𝑖
+   𝑤𝑖 ,𝑗

𝑛

𝑗 =1

𝑥𝑗  + 𝐶𝑖
+ , if  𝑧0

𝑖 =  𝑟 ,    ∀𝑖 = 1, … , 𝑛

𝐴𝑖
±( 𝑤𝑖 ,𝑗

𝑛

𝑗 =1

𝑥𝑗 )3 + 𝐵𝑖
±( 𝑤𝑖 ,𝑗

𝑛

𝑗=1

𝑥𝑗 )2 + 𝐶𝑖
±   𝑤𝑖 ,𝑗

𝑛

𝑗=1

𝑥𝑗  + 𝐷𝑖
± , if  𝑧0

𝑖 =  0

  

 

which is differentiable of 𝐶∞(ℝ𝑛) class. The Jacobian matrix of  𝐹 is: 

 

𝐽𝐹 𝑥 = (
𝜕𝐹𝑖(𝑥)

𝜕𝑥𝑘 )𝑛𝑥𝑛 .                                                (27) 
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𝜕𝐹𝑖(𝑥)

𝜕𝑥𝑘
=

=

 
 
 
 
 
 

 
 
 
 
 

(2𝐴𝑖
−   𝑤𝑖,𝑗

𝑛

𝑗 =1

𝑥𝑗  + 𝐵𝑖
−)𝑤𝑖,𝑘 ,  if  𝑧0

𝑖 =  −𝑟                                                        (28)

(2𝐴𝑖
+   𝑤𝑖,𝑗

𝑛

𝑗 =1

𝑥𝑗  + 𝐵𝑖
+)𝑤𝑖,𝑘  ,    if  𝑧0

𝑖 =  𝑟 ,    ∀𝑖 = 1, … , 𝑛                             (29)

(3𝐴𝑖
±( 𝑤𝑖 ,𝑗

𝑛

𝑗 =1

𝑥𝑗 )2 + 2𝐵𝑖
±   𝑤𝑖 ,𝑗

𝑛

𝑗 =1

𝑥𝑗  + 𝐶𝑖
±)𝑤𝑖,𝑘  ,   if  𝑧0

𝑖 =  0 .                  (30) 

  

 

Theorem 5.  Let 𝑥𝑝1
, 𝑥𝑝2

, … , 𝑥𝑝𝑟
∈ 𝐻𝑛   be given by (15), and  𝐹: ℝ𝑛 → ℝ𝑛  given 

by (24). 

Then:           

 𝐽𝐹(𝑥𝑝𝑡
) 

∞
<  𝑊 ∞   , ∀𝑡 = 1, … , 𝑟.                        (31) 

Proof. By (28): 

  
𝜕𝐹𝑖(𝑥𝑝𝑡 )

𝜕𝑥𝑘  𝑛
𝑘=1 =   (2𝐴𝑖

−  𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
 + 𝐵𝑖

−)𝑤𝑖 ,𝑘  𝑛
𝑘=1   

=   (2𝐴𝑖
−  𝑤𝑖 ,𝑗

𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
 + 𝐵𝑖

−) 𝑛
𝑘=1  𝑤𝑖 ,𝑘    

=   (2𝐴𝑖
− 𝑥𝑝𝑡

𝑖  + 𝐵𝑖
−) 𝑛

𝑘=1  𝑤𝑖,𝑘   , by using (3): 

≤   𝑤𝑖,𝑘  𝑛
𝑘=1                                                                               (32) 

By (29): 

                       
𝜕𝐹𝑖(𝑥𝑝𝑡 )

𝜕𝑥𝑘  𝑛
𝑘=1 =   (2𝐴𝑖

+  𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
 + 𝐵𝑖

+)𝑤𝑖 ,𝑘  𝑛
𝑘=1    

                            =   (2𝐴𝑖
+  𝑤𝑖 ,𝑗

𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
 + 𝐵𝑖

+) 𝑛
𝑘=1  𝑤𝑖 ,𝑘    

                        =   (2𝐴𝑖
+ 𝑥𝑝𝑡

𝑖  + 𝐵𝑖
+) 𝑛

𝑘=1  𝑤𝑖,𝑘   , by using (4): 

≤   𝑤𝑖,𝑘  .𝑛
𝑘=1                                                                              (33) 

By (30): 

  
𝜕𝐹𝑖(𝑥𝑝𝑡

)

𝜕𝑥𝑘  𝑛
𝑘=1 =   (3𝐴𝑖

±( 𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
)2 + 2𝐵𝑖

±  𝑤𝑖 ,𝑗
𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
 + 𝐶𝑖

±)𝑤𝑖 ,𝑘  𝑛
𝑘=1   

            =   3𝐴𝑖
±( 𝑤𝑖 ,𝑗

𝑛
𝑗=1 𝑥𝑝𝑡

𝑗
)2 + 2𝐵𝑖

±  𝑤𝑖 ,𝑗
𝑛
𝑗 =1 𝑥𝑝𝑡

𝑗
 + 𝐶𝑖

± 𝑛
𝑘=1  𝑤𝑖,𝑘    

               =   3𝐴𝑖
±(𝑥𝑝𝑡

𝑖 )2 + 2𝐵𝑖
± 𝑥𝑝𝑡

𝑖  + 𝐶𝑖
± 𝑛

𝑘=1  𝑤𝑖,𝑘   , by using (7): 

≤   𝑤𝑖,𝑘  𝑛
𝑘=1  .                                                                   (34) 

Finally, by (32), (33) y (34), we obtain: 

 𝐽𝐹(𝑥𝑝𝑡
) 

∞
<  𝑊 ∞   , ∀ 𝑡 = 1, … , 𝑟. 
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6. Application 

In this section we give an application of our polynomial discrete recurrent 

neural network to the recognition of four patterns. 

Example. Consider four patterns as shown in the figure 4. 

 

 
P1  P2  P3  P4 

                

                

                

                

                

 
Fig.4. The four patterns as attracting fixed points. 

 

Note that for each pattern we will need 20 neurons. Now, to encode we will use 

 

 

 = -1 

 

 = 1 

 

Coding the patterns we get: 

 
P1 -1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 

 
P2 -1 -1 -1 -1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 -1 

 
P3 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 

 
P4 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 

 

Now, disturbing the patterns P1, P2, P3 and P4, and using our polynomial discrete 

recurrent neural network, as can be seen in the figure 5, our neural network allows 

to regenerate the patterns. 
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Noise Pattern  Regenerated patterns 

     

 
 

    

        

        

        

        

 

     

 

 

    

        

        

        

        

 

     

 
 

    

        

        

        

        

 

     

 
 

    

        

        

        

        

 
Fig.5. Result of the polynomial discrete recurrent neural network. 

 

7.      Conclusion 

 

In this paper we construct a new polynomial discrete recurrent neural 

network with several fixed points attractors given previously, using the fixed 

points of quadratic and cubic functions given by (1)-(7). 

Using the relations given by (16)-(20); we construct the matrix W of the 

synaptic weights. In theorem 5 it is proved that the norm of the Jacobian matrix 

associated with the neural network at fixed points is less than the norm of the 

matrix W; which guarantees the stability of the fixed points; methodology different 

from that used by Hopfield [2], which makes use of the energy function associated 

to the system. This new polynomial discrete recurrent neural network behaves as 

autoassociative memory; allowing to reconstruct objects from certain information; 

as in the recognition of images, sounds; as in the application example to the 

recognition of four patterns.  
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